Reply to Comments by S. Azizian on J. Chem. Eng. Data 2007, 52, 1615-1620

Dogan Karadag,[†] Mustafa Turan,^{*,‡} Eda Akgül,[†] Sema Tok,[†] and Ayşegül Faki[‡]

Department of Environmental Engineering, Yildiz Technical University, 34669, Istanbul, Turkey, and Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey

Introduction

Azizian claims¹ that the reported k values in our study² are doubtful because there is no trend in the k values by changing C_0 . As shown by Azizian,³ on the basis of a theoretical point of view, there should be a change with a trend in the k values by changing C_0 . After retesting the experimental data, we obtained the same k values, and there is no trend between the k and C_0 values as given in Tables 4 and 5.² Although some researchers have found a change with a trend in the k values by changing C_0 , in many papers^{4–8} related to adsorption studies in the literature no trend between k and C_0 values has been observed. Consequently, we believe that our results are correct, and there is good agreement with results in the literature.

 Table 2. Langmuir and Freundlich Isotherm Constants at Different

 Temperatures and pH for the Adsorption of RR239

	Langmuir				Freundlich					
	R^2	$q_{\rm max}$	KL	$R_{\rm L}$	R^2	$K_{\rm F}$	n			
	temperature (pH, 5; C_0 , (60 to 150) g·L ⁻¹)									
30 °C	0.934	12.929	0.264	0.059	0.958	2.521	2.181			
35 °C	0.987	12.362	0.281	0.056	0.993	1.671	1.539			
40 °C	0.933	12.177	0.261	0.060	0.943	0.825	1.120			
pH (T, 25 °C; C_{o} , (60 to 150) g·L ⁻¹)										
3	0.947	9.635	3.283	0.005	0.964	1.545	1.426			
7	0.953	9.941	1.565	0.011	0.972	1.698	1.495			
10	0.964	9.891	1.827	0.009	0.977	1.873	1.583			

 Table 3. Langmuir and Freundlich Isotherm Constants at Different

 Temperatures and pH for the Adsorption of RB5

	Langmuir				Freundlich				
	R^2	$q_{\rm max}$	KL	$R_{\rm L}$	R^2	$K_{\rm F}$	п		
	temperature (pH, 5; C_{0} , (60 to 150) g·L ⁻¹)								
30 °C	0.997	15.942	0.007	0.724	0.971	0.227	1.346		
35 °C	0.995	14.875	0.007	0.716	0.971	0.162	1.260		
40 °C	0.972	11.020	0.008	0.708	0.903	0.124	1.211		
	pH (T, 25 °C; C_0 , (60 to 150) g·L ⁻¹)								
3	0.988	11.908	0.012	0.602	0.984	0.216	1.304		
7	0.990	9.098	0.038	0.303	0.988	0.803	1.965		
10	0.966	9.370	0.021	0.447	0.960	0.229	1.308		

Azizian³ also referred to a strange effect of temperature on the q_e values of experiments in Tables 4 and 5 and to the poor agreement between experimental and calculated q_e values at temperatures (30, 35, and 40) °C. This strange effect resulted from our incorrect entry of data in the tables. In the second columns of Tables 4 and 5,² the q_e values of 60 mg·L for the

[†] Yildiz Technical University.

	Istanl	oul	Tec	hnica	l U	Iniv	/ersity	1.
--	--------	-----	-----	-------	-----	------	---------	----

Table 4.	Pseudo	-Second	-Order	Adsorption	Rate	Constants	and
Calculate	d q _e Va	lues of l	RR239 f	for Different	t Initi	al Dye	
Concentr	ations. "	Femner :	atures. :	and nH			

$q_{\rm e}$		$q_{\rm e,calcd}$	Κ
$mg \cdot g^{-1}$	R^2	$mg \cdot g^{-1}$	$kg \cdot g^{-1} \cdot min^{-1}$
6.093	1.000	6.388	1.288
8.743	1.000	9.132	1.073
12.551	1.000	12.930	1.048
15.663	1.000	15.860	2.096
15.202	1.000	15.526	1.198
15.107	1.000	15.394	2.016
14.328	1.000	15.649	1.203
15.546	1.000	15.853	1.216
15.554	1.000	15.887	1.179
15.524	1.000	15.532	1.555
	$\frac{q_{\rm e}}{{\rm mg}\cdot{\rm g}^{-1}}$ 6.093 8.743 12.551 15.663 15.202 15.107 14.328 15.546 15.554 15.524	$\begin{array}{c c} \hline q_{\rm e} \\ \hline {\rm mg} \cdot {\rm g}^{-1} \\ \hline \\ 6.093 \\ 8.743 \\ 1.000 \\ 8.743 \\ 1.000 \\ 12.551 \\ 1.000 \\ 15.663 \\ 1.000 \\ 15.663 \\ 1.000 \\ 14.328 \\ 1.000 \\ 14.328 \\ 1.000 \\ 15.554 \\ 1.000 \\ 15.554 \\ 1.000 \\ 15.524 \\ 1.000 \end{array}$	$\begin{array}{c c} \displaystyle \frac{q_{\rm e}}{{\rm mg} \cdot {\rm g}^{-1}} & R^2 & \displaystyle \frac{q_{\rm e,calcd}}{{\rm mg} \cdot {\rm g}^{-1}} \\ \\ \hline \\ 6.093 & 1.000 & 6.388 \\ 8.743 & 1.000 & 9.132 \\ 12.551 & 1.000 & 12.930 \\ 15.663 & 1.000 & 15.860 \\ \\ \hline \\ 15.202 & 1.000 & 15.526 \\ 15.107 & 1.000 & 15.394 \\ 14.328 & 1.000 & 15.853 \\ 15.554 & 1.000 & 15.887 \\ 15.524 & 1.000 & 15.821 \\ \end{array}$

Table 5. Pseudo-Second-Order Adsorption Rate Constants and Calculated q_e Values of RB5 for Different Initial Dye Concentrations, Temperatures, and pH

	$q_{\rm e}$		$q_{\rm e,calcd}$	Κ
	$\overline{\text{mg}} \cdot \text{g}^{-1}$	R^2	$\overline{\text{mg}} \cdot \text{g}^{-1}$	$kg \cdot g^{-1} \cdot min^{-1}$
Iinitial dye concentration				
(T, 25 °C; pH, 5)				
$60 \text{ mg} \cdot \text{L}^{-1}$	3.296	0.992	4.827	0.040
$90 \text{ mg} \cdot \text{L}^{-1}$	3.776	1.000	4.294	0.134
$120 \text{ mg} \cdot \text{L}^{-1}$	5.333	1.000	5.749	0.195
$150 \text{ mg} \cdot \text{L}^{-1}$	6.666	1.000	7.538	0.108
temperature (pH, 5; C, 150 mg·L ^{-1})				
30 °C	6.592	1.000	7.227	0.122
35 °C	6.126	1.000	6.468	0.193
40 °C	5.328	0.999	7.530	0.042
pH (T, 25 °C;				
C_{0} , 150 mg·L ⁻¹)				
3	6.892	1.000	7.781	0.127
7	7.856	0.999	8.887	0.060
10	6.924	1.000	8.439	0.050

temperatures (30, 35, and 40) °C and pH (3, 7, and 10) were written by mistake instead of 150 mg·L. Other data (R^2 , $q_{e,calcd}$, and k) in the tables are given correctly. The true values and correct forms of the tables are given here.

A pseudo-second-order kinetic model was tested using six experimental data points. However, in the previous paper, one of them (contact time = 1 min) was neglected to be shown on Figure S5.² The correct form of Figure S5 that should have been in the Supporting Information is given below. Fitting of the Freundlich isotherm model was retested using four equilibrium data and recompared with the Langmuir isotherm model. The correct forms of Tables 2 and 3 with the new data are given

^{*} Corresponding author. E-mail: mturan@ins.itu.edu.tr. Tel.: +90-212-2856568. Fax: +90-212-2856587.

Figure S3. Linearized Freundlich isotherms for RB5 adsorption at different temperatures (pH 5).

Figure S4. Linearized Freundlich isotherms for RR239 adsorption at different temperatures (pH 5).

below. Also, Figures S3 and S4 are replotted using the new data and are given below.

Azizian³ recommended to apply nonlinear fitting or at least eq 1 instead of eq 2 (see ref 3 for equations). In our study, a linear method was preferred for the kinetic and isotherm modeling because it is faster, easier, and less complicated than nonlinear regression. Four linear forms of the Langmuir model were tested during isotherm modeling, and eq 2 yielded the highest agreement between experimental data and calculated values.

Figure S5. Pseudo-second-order kinetics of RR 239 adsorption at various concentrations (pH, 5; temperature, 25 °C).

Literature Cited

- Azizian, S. Comments on "Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite" (Karadag, D.; Turan, M.; Akgul, E.; Tok, S.; Faki, A. J. Chem. Eng. Data 2007, 52, 1615–1620) J. Chem. Eng. Data 2007, 53, 322–323.
- (2) Karadag, D.; Turan, M.; Akgul, E.; Tok, S.; Faki, A. Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite. *J. Chem. Eng. Data* 2007, 52, 1615–1620.
- (3) Azizian, S. Kinetic Models of Sorption: a Theoretical Analysis. J. Colloid Interface Sci. 2004, 276, 47.
- (4) Baskaralingam, P.; Pulikes, M.; Elango, D.; Ramamurthi, V.; Sivanesan, S. Adsorption of acid dye onto organobentonite. *J. Hazard. Mater.* 2006, *B128*, 138–144.
- (5) Demirbas, E.; Kobya, M.; Senturk, E.; Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. *Water S A* 2004, 30, 533–540.
- (6) Ho, Y. S. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003, 37, 2323–2330.
- (7) Ho, Y. S.; Chiang, C. C.; Hsu, Y. C. Sorption kinetics for dye removal from aqueous solution using activated clay. *Sep. Sci. Technol.* 2001, 36, 2473–2488.
- (8) Ho, Y. S.; McKay, G. Sorption of dye from aqueous solution by peat. *Chem. Eng. J.* 1998, 70, 115–124.

Received for review September 21, 2007. Accepted October 27, 2007.

JE7005456